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Seeing the true nature of
“An Evolutionary Crisis”

www.ccnr.org



Alexandre Grothendieck



India-Pakistani conflict using
100 Hiroshima-size nuclear weapons
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Change in average surface temperatures
2 years after India-Pakistan nuclear war
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Canadian wheat production after small drops In
average surface temperature




Largest conventional bomb = 44 tons TNT

Hiroshima-size nuclear weapon = 15,000 tons TNT
Smallest strategic nuclear weapon = 100,000 tons TNT
Large U.S. strategic nuclear weapon = 1,300,000 tons TNT

Largest known strategic nuclear weapon = 100,000,000 tons TNT
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Center Dot w = Total firepower of World War |l
Red squares = U.S. and Russian nuclear weapons on high-alert
All the squares = Deployed U.S. and Russia Nuclear Weapons




Total combined explosive power of all deployed and
Total combined explosive power of operational U.S. and Russian nuclear weapons
all bombs detonated in World War Il J J

Total explosive power of U.S. and Russian
High-alert nuclear weapons

One Megaton = one million tons of TNT =1 Mt

India-Pakistan War = 12 Mt

World War Il = 3 Mt

High-Alert U.S. and Russian weapons = 1185 Mt
Total deployed U.S. and Russian weapons = 2700 MT
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Total combined explosive power of operational U.S. and Russian nuclear weapons
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India-Pakistan War
100 Hiroshima-size bombs

Total explosive power of U.S. and Russian
High-alert nuclear weapons

One Megaton = one million tons of TNT =1 Mt

India-Pakistan War = 12 Mt

World War Il = 3 Mt

High-Alert U.S. and Russian weapons = 1185 Mt
Total deployed U.S. and Russian weapons = 2700 MT
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Demystifying the Science:
Arithmetic at Work

www.ccnr.org



Example 1

Reactor Meltdowns

www.ccnr.org



Royal Commission on Electric Power Planning

A Race Against Time (1978)

.. . two well -informed nuclear critics who participated in the
hearings, Dr. Gordon Edwards and Ralph Torrie , have argued
that the probability of a meltdown could be about 100 times
higher than the theoretical levels. . .



Royal Commission on Electric Power Planning

A Race Against Time (1978)

.. . two well -informed nuclear critics who participated in the
hearings, Dr. Gordon Edwards and Ralph Torrie , have argued
that the probability of a meltdown could be about 100 times
higher than the theoretical levels. . .

We believe that the Edwards/Torrie estimate is more realistic
than the theoretical probability. . .



Royal Commission on Electric Power Planning

A Race Against Time (1978)

.. . two well -informed nuclear critics who participated in the
hearings, Dr. Gordon Edwards and Ralph Torrie , have argued
that the probability of a meltdown could be about 100 times
higher than the theoretical levels. . .

We believe that the Edwards/Torrie estimate is more realistic
than the theoretical probability. . .

Assuming, for the sake of argument, that within the next 40
years Canada will have 100 operating reactors, the probability
of a core meltdown might be in the order of 1in 40 years. ..



The Power of Arithmetic

Calculation
Probability of a Small Pipe Break = per reactor per year
Probability of no Emergency Cooling = per reactor per year

Probability of meltdown = p.r.p.y.



The Power of Arithmetic

Calculation
Probability of a Small Pipe Break = per reactor per year
Probability of no Emergency Cooling = per reactor per year
Probability of meltdown = p.r.p.y.

Comparison
With 20 reactors running 30 years, probability =

Probability of rolling 12 on two dice =



Example 2

Carcinogenicity of Radon

www.ccnr.org



Using only the data supplied . . . it is shown that
continuous exposure to 0.02 WL for 12 hours per day
could lead to a In the incidence of

lung cancer for males.

Gordon Edwards testimony (1978)
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Using only the data supplied . . . it is shown that
continuous exposure to 0.02 WL for 12 hours per day
could lead to a In the incidence of
lung cancer for males.

That corresponds to
per 1000 men exposed. ..

It is therefore concluded that the radon-in-housing
standards have to be tightened up considerably.

Gordon Edwards testimony (1978)



British Columbia Medical Association

Health Hazards of Uranium Mining (1980)

200-300 extra cases of lung cancer
per 10,000 people per lifetime



British Columbia Medical Association

Health Hazards of Uranium Mining (1980)

200-300 extra cases of lung cancer
per 10,000 people per lifetime

tantamount to allowing an industrially induced and
publicly sanctioned epidemic of cancer



Thomas & McNeill (AECB INFO-0081)
Risk Estimates for the

Health Effects of Alpha Radiation

could increase the
lifetime lung cancer risk by about 40 percent . ..

no justification
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Radioactive Waste
INn Context

www.ccnr.org
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Volume of Water

Total High-Level
Radioactive Wastes
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Why Geologic Storage
Can Not Solve The
High-Level Radioactive
Waste Problem



WITH GEOLOGIC DISPOSAL

ONE
REACTOR

A A

AFTER 2 YEARS

Because the irradiated fuel is so hot,
It cannot be moved for about 10 years.



WITH GEOLOGIC DISPOSAL

| AAAA

AFTER 4 YEARS

So there is no change . ..



WITH GEOLOGIC DISPOSAL

| AAAAAAAA

AFTER 8 YEARS

. . . Since the waste must still be stored at the reactor site.



WITH GEOLOGIC DISPOSAL

| A A A AAAAAAAAAAAAA

AFTER 16 YEARS

After 10 years, it can be put into dry storage -- but not buried.



WITH GEOLOGIC DISPOSAL

| A A A AAMAAAAAAAAAAAA A .

AFTER 32 YEARS THIS PORTION CAN BE BURIED

Only the older, less radioactive, less volatile waste can be buried
That means the 30-year-old waste.



WITH GEOLOGIC DISPOSAL

> 90 %

| A A A AAAAAAAAAAAAAAA

<10 %

AA

AFTER 40 YEARS

THIS PORTION CAN BE BURIE

D

But over 90 % of the total radioactive inventory is in the first
30 year 0s wort h Soléss than t0&dg bariece d

1



WITH GEOLOGIC DISPOSAL

> 90 % <10 %
AFTER 40 YEARS THIS PORTION CAN BE BURIED
Conclusion:

The Catastrophe Potentiat the Surfac&till Remains

(Unless the reactor is shut down for 30 years and all the waste is buried)




WITH GEOLOGIC DISPOSAL

A A A ARRKARAAAARAAAAFAA A FAIARAR
A A A ARAAARAAARRAAARRAAATAIARAR

unburied waste buried waste

WITH 2 REACTORS

A4

As nuclear power expands, the amount of
unburied irradiated fuel will grow proportionately.



WITH GEOLOGIC DISPOSAL

buried waste
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WITH 4 REACTORS




WITH GEOLOGIC DISPOSAL
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WITH GEOLOGIC DISPOSAL
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So: WE HAVE ANEVER- GROWING INVENTORYOF UNBURIED WASTE




So: Geologic Storage
CAN NOT Solve The
High-Level Radioactive

Waste Problem . ..



So: Geologic Storage
CAN NOT Solve The
High-Level Radioactive
Waste Problem . . .

. . unless there Is a complete
phase-out of nuclear power
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nNSurvival o0 and

www.ccnr.org



Optimism
Confidence
Honesty

Imagination



Catastrophic Climatic
Consequences of
Nuclear Conflict

Steven Starr
* International Network of Engineers
and Scientists Against Proliferation
» Physicians for Global Survival.......

PowerPoint slides prepared with the assistance of

Alan Robock

Department of Environmental Sciences
Rutgers University, New Brunswick, New Jersey USA

www.nucleardarkness.com




Methodology of Research

A Comprehensive peer reviewed studies
I Rutgers; University of Colorado-Boulder; UCLA

A Multiple 10 year simulations
I state-of-the-art techniques & equipment

A Employment of the NASA climate model

I used by Intergovernmental Panel on Climate Change



an atom of
uranium-2348
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FIGURE 2
An Alternate IWustrative Futwre for TS Gross Frimary Enerqy Tse
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ANukespeako and

www.ccnr.org



Nuclear Power:
Safe, Clean, Cheap, and Abundant

Disposal
Recycling

Emission Free






THE END

Canadian Coalition for Nuclear Responsibility
Www.ccnr.org



